Database Competence Centre

0

Maaike Limper Lorena Lobato Pardavila Andrei Dumitru Ignacio Coterillo Coz Stefano Alberto Russo Manuel Martin Marquez

Background image: Shutterstock

Database Competence Centre

- Virtualization
- Replication Technology
- > In-Database Physics Analysis
- **Enterprise Manager and 12c new Features**
- Data Analytics

Reminder: What we are trying to do

CERN openlab

>

nens

ORACLE

- Integrate Oracle VM Hypevisors as compute nodes
 providers for OpenStack
- Working Custom OVM Server like Hypervisor
 - Due to dependencies and limitations of use in OVM 3.2.x
 - Targeting Oracle Linux 6 (base for future OVM Server in next releases 3.3.x, 4.x)
 - Xen 4.1.6-rc1 compiled from the Xen Git repository

Virtualization

Achieved milestones

- Setting up an OpenStack Havana test environment
 - Replicated same integration of custom hypervisor as a Nova compute node as previously achieved for Grizzly
 - Networking dependencies/Linux Kernel version mismatches are now solved

CERN openlab

- Tested the feasibility of using Xen 4.3
 - incompatibility issues with the required version of libvirt

Virtualization

In the meantime,

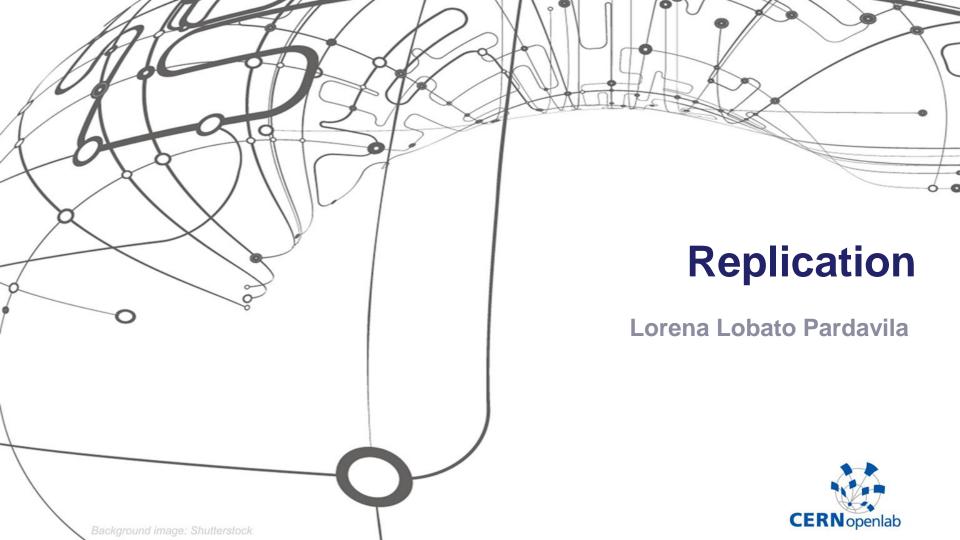
CERN openlab

opensta

ORACLE

- Oracle is about to release a beta version of the next Oracle VM release, which solves the limitations we were targeting with our custom hypervisor:
 - Based on OL 6.x
 - Possibility of installing extra packages (No more black box model)
 - The IT-DB infrastructure is on the process of integrating with the new CERN computing infrastructure (**OpenStack + Puppet**)
 - IT-DB currently has a number of databases and services running on Oracle VM
 - This services have to be migrated to the new operating infrastructure while continuing to run on Oracle VM for support or certification reasons

Virtualization


- Substitute Custom Hypervisor with Oracle VM
 Hypervisor Beta in the existing test environments
 - Start Integration tests of Oracle VM Server in the CERN IT OpenStack production setup

ORACLE

CERN openlab

- °Custom CERN Networking/Storage access
- Configuration management (Puppet)
- Testing OpenStack HA solutions

Recent Activities

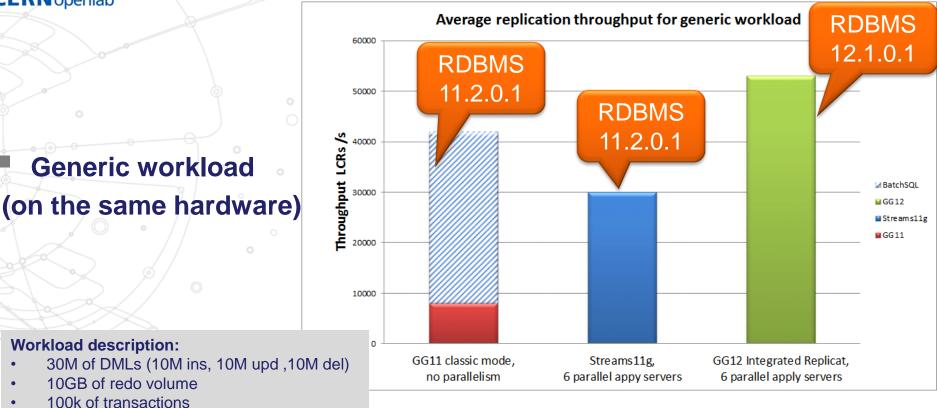
- Testing and evaluation of the newest version of Golden Gate (12.1.2)
 - Performance test with generic and production workloads
 Very good results observed
 - Better performance than Streams (11g or 12c)
 - Streams and GG12c comparision presented at UKOUG13
 - Extensive feedback provided to Oracle

Evaluation of Oracle GoldenGate Director

Preparation of Streams to GoldenGate migration

Testing migration procedures

CERN openlab

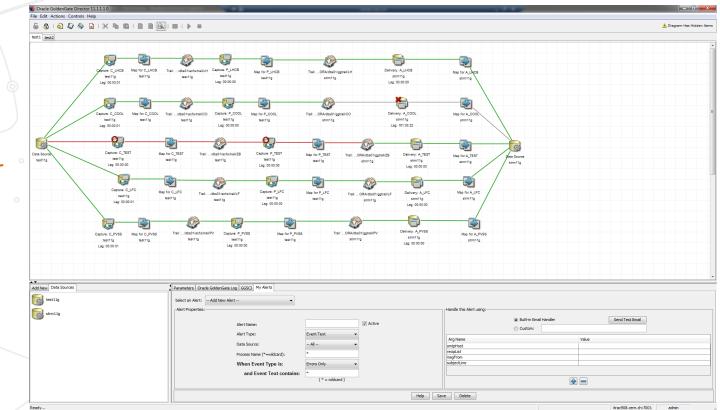


>

Golden Gate 12c

- A lot of (good) features inherited from Streams
- > Improved scalability performance better than Streams
- Easier deployment, data instantiation and administration
- Availability of in-database monitoring and reporting
- A lot of new features had been evaluated
 - Integrated Replicate
 - Downstream capture
 - Conflicts Detection-Resolution(CDR)

Golden Gate 12c



CERN openlab Major Review January 2014

11

CERN openlab

Overview Golden Gate Director

CERN openlab Major Review January 2014

Background image: Shutterstock

OGG Director for centralized monitoring and configuration (wraps GGSCI)

CERNopenlab

- Pilot production like replication between T0 and T1s (BNL, TRIUMF)
- GG administration workshop for T1s DBA
 - Migrations from Streams to Golden Gate 12c
 - LHCB (Q2-Q3)
 - ATLAS online offline (Q2)
 - ATLAS offline -T1s (Q3 2014)

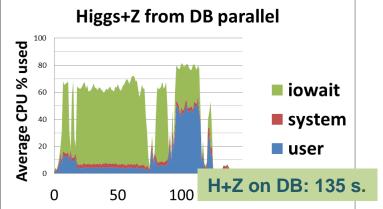
Golden Gate replication as a service

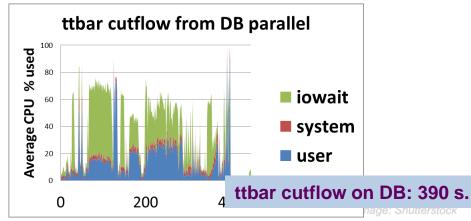
Evaluation of zero-downtime database upgrades/migrations using Golden Gate

CERN openlab

0

Maaike Limper

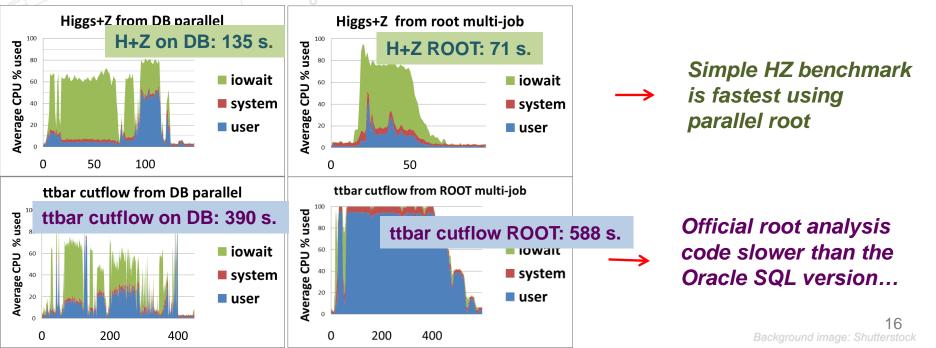

Background image: Shutterstock


CERNopenlab

A new analysis benchmark

- Previous studies done using simplified Higgs+Z benchmark
 - 40 variables from 6 different tables, simplified w.r.t actual analysis, external code only for jet selection
- New more realistics benchmark "ttbar cutflow" (top-pair quark production)
 - Actual ATLAS analysis code from svn converted into Oracle SQL
 - Requires external code in photon, muon and jet-selection
 - Many multi-table joins required
 - Uses 319 variables from 10 different tables

New benchmark is more realistic test of physics analysis in Oracle database!



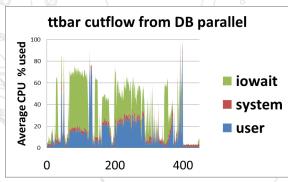
Oracle vs ROOT (multi-job)

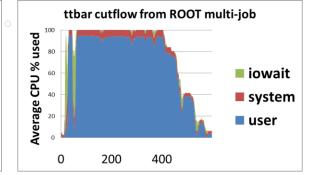
Performance comparison on 5-machine cluster, data divided over 12 disks per machine Run ROOT using multiple root-jobs, each analysing sub-set of data, and merge result Compare ROOT and Oracle using same degree of parallelism=P40

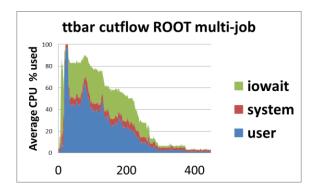
CERN openlab

Oracle vs ROOT (multi-job)

But I could improve original analysis code by improving the way the branches were loaded

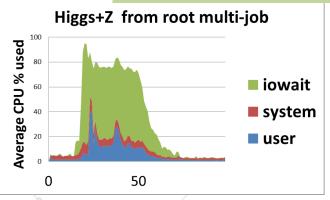

After this ROOT runs (slightly) faster then DB for ttbar cutflow as well

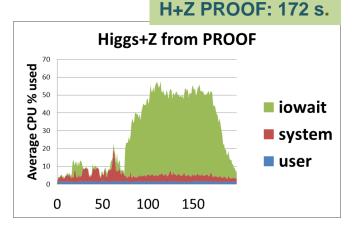

Long tail in multi-job analysis as scripts wait for all jobs to complete before merging


ttbar cutflow on DB: 390 s.

ttbar cutflow ROOT (old): 588 s.

CERNopenlab


 \rightarrow


Y

Multi-job ROOT vs PROOF

Official framework to run ROOT in parallel is the *Parallel ROOT Framework* Use Proof-on-demand (PoD) on 5-machine cluster with 40 workers Benchmark analysis with PROOF on cluster <u>slower</u> than test with multiple ROOT jobs, mainly due to initial time needed to compile classes on workers

H+Z ROOT multi-job: 71 s.

Hadoop tests

Reinstalled our Hadoop cluster: now running Hadoop 2!

- New in Hadoop2: TaskTracker replaced by Yarn's ResourceManager
- > First test with Hadoop parquet

CERN openlab

- Parquet is a column-based storage for Hadoop
- Storing the files in Parquet format, with gzip compression, results in greatly reduced datasize
- Still need to write MapReduce implementation on Parquet

Data for Object Name	ROOT size in GB (est.)	Hadoop Parquet (w. gzip) size in GB	Oracle table size in GB
jet	15.13	6.5	32.27
electron	44.40	27.8	94.67
MET	2.19	1.7	2.53
EF (trigger)	0.91	0.08	7.02

Conclusion/Outlook

Near future task-list:

- > Oracle In-Memory Columnar beta
- Get a decent Hadoop reference working, using parquet storage looks interesting but still need to implement (efficient) version of benchmark code
 - Keep going with the Hadoop vs ROOT vs Oracle and prepare final judgement on pro's an cons of the different approaches
 - What is easiest way for user to get good performance? I need to consider my use of SQL hints, re-write of analysis code, personal setup for parallelism etc.!

0

Andrei Dumitru

Background image: Shutterstock

Oracle DB 12c

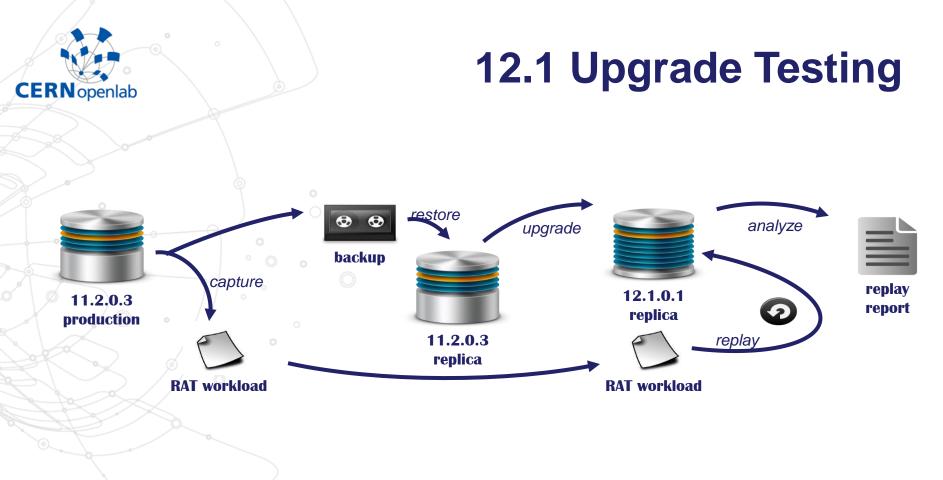
Oracle Database 12c available at CERN

Development service available

Continuing work on

CERN openlab

- Applications validation and certification
 - Capture and replay production workloads
 - Identify consolidation candidates
- Data protection and availability (Oracle Data Guard)
- Prepare deployment in our environment
- Expand DBoD service with the new Oracle Multitenant Architecture


>

12.1 Upgrade Testing

Testing procedure

- Using Oracle Real Application Testing
- Capture 8-16h of production workload (11.2.0.3)
 - Restore production database on target hardware
- Upgrade the restored replica to 12.1.0.1
- Replay workload in the upgraded database
- Analyse results and publish report
 - Follow up issues if any

slide provided by Emil Pilecki, IT-DB

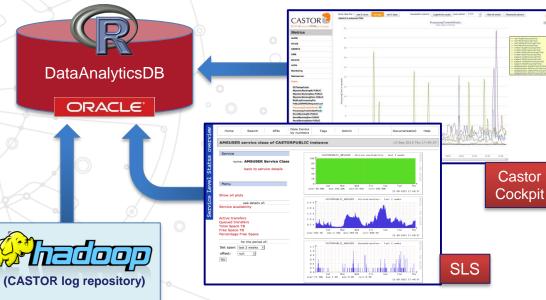
slide provided by Emil Pilecki, IT-DB

12.1 Upgrade Testing

Current results

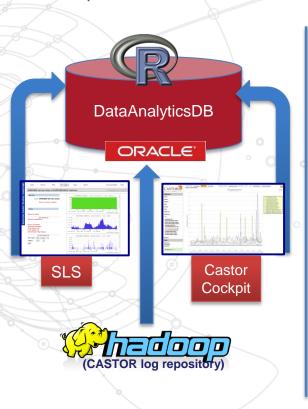
- 11 databases tested
 - Feedback delivered to Oracle

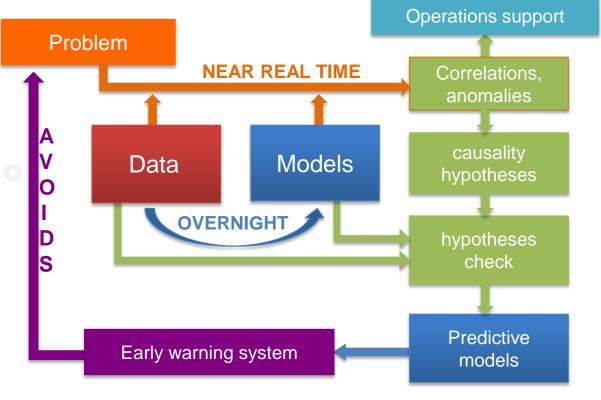
Migration to production


slide provided by Emil Pilecki, IT-DB

CASTOR: the CERN Advanced STORage Manager

- Lot of (complex) log data recorded in the past years from <u>various systems</u>
- **CASTOR TEAM:** Can we obtain useful information from it?




- Cause of errors
- Anomaly detection
- Predictions
- Early warning systems

CENTRALIZE and STANDARDIZE data

CASTOR: the CERN Advanced STORage Manager

CERNopenlab

Openlab V: Data Analytics Challenges

- CERN openlab Workshop on Data Analytics Use Cases
 - Organized by EN and IT
 - Overview Data analytics at CERN
 - Use case:
 - Context
 - Status
 - Technologies
 - Limitations
 - Future Plans and Directions

CERN openlab Major Review January 2014

Background image: Shutterstock

Openlab V: Data Analytics Challenges

Huge interest and potential benefits for CERN

- IT, BE, PH, EN departments
- > Improve our Monitoring and control systems by mean of Data Analytics
 - Intelligent
 - Proactive
 - Predictive

CERN openlab Major Review January 2014

Background image: Shutterstock

Openlab V: Data Analytics Challenges

Challenges

 \rangle

- Real time analytics based on CERN use case
 - Based on domain knowledge and hidden knowledge extracted by batch analytics
 - CEP, Storm
- Batch analytics
 - Correlation analysis
 - Forecasting modeling
 - Knowledge discovering
- Data analytics repository
- AaaS
- Educational challenge

CERN-openlab Data Analytics Workshop

CERN: A UNIQUE ENVIRONMENT CATALYSING COLLABORATIONS

20th February 2014

Participants SIEMENS

Vandex

Deutscher Wetterdienst

blue yonder Forward looking. Forward thinking.

Human Brain Project

Organized

Swiss Oracle Users Group:

- Application Continuity, seen from CERN, Andrei Dumitru
- Orange (FR) Oracle Enterprise Manager 12c reference visit – Andrei Dumitru, Nicolas Marescaux, Daniel Gomez Blanco

UKOUG Tech13

CERN openlab

- Lost Writes, a DBA's Nightmare?, Luca Canali
- Storage Latency for Oracle DBAs, Luca Canali
- Next Generation GoldenGate vs. Streams for Physics Data, Z. Baranowski

CHEP 2013

An SQL-based approach to Physics Analysis, Maaike Limper

Acknowledgements

Chris Roderick (BE) **Emil Pilecki (IT) Eric Grancher (IT)** Luca Canali (IT) **Ruben Gaspar Aparicio (IT) Daniel Gomez Blanco (IT)** Zbigniew Baranowski (IT) Manuel Gonzalez (EN) Filipo Tilaro (EN) **Axel Voitier (EN) Philippe Gayet (EN)**

